Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

3-Benzyloxy-16-[(N-methyl- N-phenyl-amino)methylidene]estra-1,3,5(10)-trien-17-one

Taisuke Matsumoto, ${ }^{\text {a }}$ Masataka Watanabe, ${ }^{\text {b }}$ Tomohiro Matsumoto, ${ }^{\mathrm{b}}$ Shuntaro Mataka ${ }^{\mathrm{a}}$ and Thies Thiemann ${ }^{\mathrm{a} *}$
${ }^{\mathrm{a}}$ Institute of Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koh-en, Kasuga-shi, Fukuoka 816-8580, Japan, and ${ }^{\text {b }}$ Interdisciplinary Graduate School of Engineering, Kyushu University, 6-1 Kasuga-koh-en, Kasuga-shi, Fukuoka 816-8580, Japan
Correspondence e-mail: thies@cm.kyushu-u.ac.jp

Received 8 July 2004
Accepted 13 September 2004
Online 22 October 2004
In the title compound, $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{NO}_{2}$, the five-membered ring adopts a half-chair conformation. The N-methyl- N-phenylsubstituted keto-enamine moiety shows a comparatively long $\mathrm{Csp}{ }^{2}-\mathrm{N}$ bond.

Comment

Recently, there has been interest in the annelation of five- and six-membered nitrogen-containing heteroaromatic rings to the D ring of estrane derivatives. The title compound, (I), is an excellent starting material for such pyrimidino- and pyrazoloannelated systems. In order to optimize the reaction conditions for the transformation of (I), a good understanding of the stereoelectronic prerequisites of (I) is important. For this reason, an X-ray crystal structure analysis of (I) was carried out and the results are presented here.

There is one independent molecule of (I) per asymmetric unit cell (Fig. 1). Ring A shows little distortion from planarity, as is evident in other estrones and estradiols for which X-ray
crystal structure analyses have been carried out. Ring C, with trans fusion to rings B and D, has a chair conformation. As a cyclohexene, ring B in estranes is usually conformationally more flexible (Bucourt \& Hainault, 1967; Matsumoto et al., 2004; Yamamoto et al., 2004). In (I), ring B has a half-chair conformation, as evaluated with the Cremer \& Pople (1975) puckering parameters $Q=0.494$ (3) $\AA, \theta=46.0(2)^{\circ}$ and $\varphi=$ $160.8(3)^{\circ}$ [for a perfect half-chair conformation, $\theta=50.8^{\circ}$ and $\varphi=k \times 60+30^{\circ}$; for a perfect chair conformation (the next closest conformation), $\theta=0^{\circ}$ (Boeyens, 1978)]. This configuration is also in accordance with the relative signs of the endocyclic torsion angles within ring B (see Boeyens, 1978).

(I)

Ring D has a half-chair conformation $[Q=0.415$ (3) \AA and $\left.\varphi=204.7(3)^{\circ}\right]$, with a pseudorotation angle $\Delta=6.2(2)^{\circ}$, and a maximum torsion angle $\varphi_{m}=42.3$ (1) ${ }^{\circ}$ (Rao et al., 1981) for the atom sequence C13-C14. The important keto-enamine moiety $\mathrm{O} 2-\mathrm{C} 17-\mathrm{C} 16-\mathrm{C} 26-\mathrm{N} 1$ has an E-configured $\mathrm{C} 16-\mathrm{C} 26$ olefinic bond, with the keto and amino functionalities on opposing sides (Table 1). This mirrors the results of X-ray structure analyses of other keto-enamines (Skinnemoen \& Ottersen, 1980; Groselj et al., 2002; Larsen, 1981) and can be explained by electronic repulsion of the keto O atom and amine N atom. The $\mathrm{C} 16-\mathrm{C} 17$ bond [1.481 (3) \AA] is significantly longer than in other non-annelated aminomethylidenecyclopentanones (Groselj et al., 2002; Larsen, 1981). Previously, we have observed longer bond lengths for C16C17 in other estrane derivatives compared with analogously substituted but non-annelated cyclopentanes (Matsumoto et al., 2004). The other bond lengths involving atoms that define the keto-enamine moiety of (I), C16-C26 [1.346 (3) Å] and C26-N1 [1.369 (3) Å], cannot be compared directly with results from the literature, as X-ray crystal structures of other keto-enamines with a phenyl and an alkyl substituent on the

Figure 1
A view of the molecule of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

N atom have not been published to date. A phenyl substituent on the N atom (Skinnemoen \& Ottersen, 1980), however, increases the $\mathrm{N}-\mathrm{C}$ (enamine) bond length compared with an alkyl substituent in mono- N-substituted ketoenamines (Larsen, 1981). In (I), the methylidene C16-C26 and keto $\mathrm{C} 17-\mathrm{O} 2$ bonds show some deviation from synplanarity, with a $\mathrm{C} 26-\mathrm{C} 16-\mathrm{C} 17-\mathrm{O} 2$ torsion angle of 6.1 (4) ${ }^{\circ}$

In the crystal structure, molecules of (I) pack in four distinct columns arranged in a stepwise fashion. Interactions between molecules are mostly of a dispersive nature, but there are also a number of weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 2), the contact distances being in the typical range for reported $\mathrm{C}-$ H $\cdots \pi$ interactions (Nishio \& Hirota, 1989; Nishio et al., 1998), where the H atoms are directed towards the π system. Other close contacts that may play a role in the crystal packing are $\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{O} 2(x-1, \quad y, z)(2.70 \AA)$ and $\mathrm{C} 23-\mathrm{H} 24 \cdots$ $\mathrm{O} 2\left(-\frac{1}{2}-x,-y, \frac{1}{2}+z\right)(2.61 \AA)$.

Experimental

Compound (I) was prepared by the reaction of 3-benzyloxy-16-(hydroxymethylidene)estra-1,3,5(10)-trien-17-one with N-methyl- N phenylammonium trifluoroacetate, according to the literature method of Matsumoto et al. (2003). The crystal used for X-ray structure analysis was obtained by recrystallization of (I) from chloroform-ether-hexane (1:1:1).

Crystal data

$\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{NO}_{2}$
$M_{r}=47 . .65$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=6.1333(2) \AA \AA \AA$
$b=11.4780(5) \AA$
$c=35.47(2) \AA$
$V=2495.4(2) \AA$
$Z=4$
$D_{x}=1.271 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Rigaku Saturn70 CCD areadetector diffractometer

ω scans

Absorption correction: multi-scan (Jacobson, 1998)
$T_{\text {min }}=0.908, T_{\text {max }}=0.995$
25566 measured reflections

Refinement

Refinement on F^{2}
$R(F)=0.034$
$w R\left(F^{2}\right)=0.062$
$S=1.00$
3276 reflections
361 parameters
H atoms treated by a mixture of
independent and constrained
refinement
Mo $K \alpha$ radiation
Cell parameters from 5574
reflections
$\theta=3.3-27.5^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=123.1 \mathrm{~K}$
Needle, colourless
$0.13 \times 0.08 \times 0.06 \mathrm{~mm}$

3276 independent reflections 2156 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
$R_{\text {int }}=0.056$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-7 \rightarrow 7$
$k=-14 \rightarrow 14$
$l=-46 \rightarrow 45$
$w=1 /\left[0.578 \sigma\left(F_{o}{ }^{2}\right)\right] /\left(4 F_{o}{ }^{2}\right)$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.25 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e}^{\AA^{-3}}$
Extinction correction: Larson
(1970), equation 22

Extinction coefficient: 42.1 (40)
refinement

Table 1

Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{O} 2-\mathrm{C} 17$	$1.229(3)$	$\mathrm{C} 16-\mathrm{C} 17$	$1.481(3)$
$\mathrm{N} 1-\mathrm{C} 26$	$1.369(3)$	$\mathrm{C} 16-\mathrm{C} 26$	$1.346(3)$
$\mathrm{C} 26-\mathrm{C} 16-\mathrm{C} 17-\mathrm{O} 2$	$6.1(4)$		

Table 2
Short-contact geometry ($\AA,{ }^{\circ}$).
Cg1 denotes the centre of the C28-C33 ring, Cg2 the centre of the C1-C5/C10 ring and $C g 3$ the centre of the $\mathrm{C} 20-\mathrm{C} 25$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.95	2.70	$3.607(3)$	161
$\mathrm{C} 23-\mathrm{H} 24 \cdots \mathrm{O} 2^{\text {ii }}$	0.95	2.61	$3.395(3)$	141
$\mathrm{C} 1-\mathrm{H} 1 \cdots C g 1^{\mathrm{iii}}$	0.95	2.99	$3.685(3)$	131
$\mathrm{C} 29-\mathrm{H} 31 \cdots C g 2^{\mathrm{iv}}$	0.95	2.97	$3.694(3)$	134
$\mathrm{C} 32-\mathrm{H} 34 \cdots 3^{v}$	0.95	2.56	$3.456(3)$	158
$\mathrm{C} 33-\mathrm{H} 35 \cdots C g 3^{v}$	0.95	2.73	$3.582(3)$	149
Symmetry codes:	(i) $x-1, y, z ;$ (ii)	$\frac{1}{2}-x,-y, \frac{1}{2}+z ;$	(iii) $1-x, y-\frac{1}{2}, \frac{3}{2}-z ;$ (iv)	
$-x, \frac{1}{2}+y, \frac{3}{2}-z ;\left(\right.$ v) $\frac{1}{2}-x,-y, z-\frac{1}{2}$.				

All H atoms were refined as riding on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and all $U_{\text {iso }}(\mathrm{H})$ values were set at $1.2 U_{\text {eq }}(\mathrm{C})$. The absolute configuration could not be determined from the X-ray data but was known from the synthetic route.

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) and CRYSTALS (Watkin et al., 1996); molecular graphics: PLATON (Spek, 2003) and MERCURY (Bruno et al., 2002); software used to prepare material for publication: CrystalStructure.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GA1072). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M. K., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.

Bucourt, R. \& Hainault, D. (1967). Bull. Soc. Chim. Fr. pp. 4562-4567.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Groselj, U., Recnik, S., Svete, J., Meden, A. \& Stanovnik, B. (2002). Tetrahedron: Asymmetry, 13, 821-833.
Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.
Larsen, S. (1981). Acta Cryst. B37, 742-744.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
Matsumoto, T., Matsumoto, T., Watanabe, M., Mataka, S. \& Thiemann, T. (2004). Acta Cryst. C60, o501-o502.

Matsumoto, T., Watanabe, M., Mataka, S. \& Thiemann, T. (2003). Steroids, 68, 751-757.
Nishio, M. \& Hirota, M. (1989). Tetrahedron, 45, 7201-7245.
Nishio, M., Hirota, M. \& Umezawa, Y. (1998). The C-H. . π Interaction Evidence, Nature and Consequences. New York: Wiley-VCH.
Rao, S. T., Westhof, E. \& Sundaralingam, M. (1981). Acta Cryst. A37, 421-425.
Rigaku (1999). CrystalClear. Version 1.3.5. Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Skinnemoen, K. \& Ottersen, T. (1980). Acta Chem. Scand. Ser. A, 34, 359-363.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Watkin, D. J., Prout, C. K., Carruthers, J. R. \& Betteridge, P. W. (1996). CRYSTALS. Issue 10. Chemical Crystallography Laboratory, University of Oxford, England.
Yamamoto, C., Matsumoto, T., Watanabe, M., Hitzer, E. H. S., Mataka, S. \& Thiemann, T. (2004). Acta Cryst. C60, o130-o132.

